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圧電センサを用いた無拘束生体信号計測による 

深層学習睡眠解析モデルの開発 
Development of deep learning model for analyzing sleep architecture 

using unconstrained measurements of vital data with piezoelectric sensors 

 鐘ヶ江正巳  
 KANEGAE Masatomo 

薄膜シート型圧電センサにより睡眠中の心拍、呼吸、体動および心肺カップリング指標を無拘束モニタリン

グする手法を提案した。呼吸器科クリニックにおいて１００名以上の被験者の協力を得て、終夜睡眠ポリソムノ

グラフィ検査と圧電センサの同時測定を行い、双方向 LSTM ネットワークを用いた深層学習による睡眠段階

推定モデルを構築した。本モデルを用いて睡眠の質評価のための主要な睡眠指標を推定可能であるとこか

らヘルスケア市場への睡眠解析サービスを開始した。 

An unconstrained method for the monitoring of cardiorespiratory and body movement activities was proposed 

with the use of sheet-type piezoelectric sensor. By conducting simultaneous measurements with an overnight 

polysomnography in over 100 subjects, a deep learning model was built for predicting sleep stages using 

bidirectional-LSTM network. This model is capable of estimating key sleep parameters for evaluating sleep 

quality, and we have launched the sleep analysis service for healthcare market.  
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1 はじめに 

睡眠の質は身体の健康状態と幸福感に影響を与

え 1)、睡眠の質の低下は、肥満、高血圧、糖尿病 2)、

脳機能障害 3)など、様々な疾患の発症と関連してい

ることが知られている。睡眠の質を評価し、睡眠関連

疾患を診断するためには、睡眠段階を正確に測定

する必要がある。現在、睡眠段階の評価は、終夜睡

眠ポリグラフ（PSG）検査で行われているが、脳波

（EEG）、眼電図（EOG）、顎および脚の筋電図

（EMG）、呼吸活動などの生理学的信号を取得する

ために複数のセンサを体に装着する必要がある。そ

のため患者は複数のセンサを装着したまま眠ること

に不快感を覚える場合があり、また、センサの配線

により動きが制限され、通常の睡眠パターンが乱れ

る可能性がある。近年、睡眠の質向上への関心の

高まりやウエアラブル技術の進歩を背景に、PSG 検

査を受けずに睡眠状態を把握できる消費者向けの

睡眠モニタリングデバイスが開発されている 4)。自宅

で EEG を計測できるポータブルデバイスや心拍呼

吸信号から睡眠状態を推測するウエアラブルデバイ

スなどである。本稿では、シート型圧電センサを用い

て非接触で心拍数、呼吸数、心肺カップリング指標

および体動の抽出を行い、PSG で得られた睡眠段

階との関連をディープニューラルネットワークで学習

させることで、無拘束で睡眠段階を推定できるシス

テムの開発について述べる。圧電センサは、心臓収

縮によって生じる弾動力（心弾動図：BCG）と胸郭変

位を通して記録される呼吸運動、睡眠中の寝返りに

よる体動を検出する。単一センサから複数のパラメ

ータを取得できることは、皮膚への電極装着の必要

性がなく、肉体的および精神的負担を軽減できる。

また、通常の睡眠パターンを妨げずに睡眠モニタリ

ングが可能となる。本開発の目的は、圧電センサか

ら得られた心拍、呼吸、体動情報を入力として PSG 

に相当する睡眠段階を推定する深層学習モデルを

構築することである。 

2 方法 

2.1 実験参加者  

埼玉県在住の、睡眠時無呼吸症の疑いがある成

人１０６名（男性８９名、女性１７名）を対象とした。平

均年齢４９．８±１４．４歳、体重７５．８±１７．２ kg、

BMI は２６．６±５．０ ｋｇ／ｍ２である。参加者は呼吸
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器科クリニックの睡眠検査室において、終夜 PSG 検

査と圧電センサによる計測を同時に受けた。なお、

参加者は同時計測に関する臨床専門家による説明

を受け、同意書を提出した。 

2.2. 睡眠ポリグラフ検査 

終夜 PSG は、クリニック睡眠検査室において、フィ

リップス睡眠診断システムを用いて実施した。ECG、

EOG、前脛骨筋の EMG、胸腹部プレシスモグラフと

鼻部温度センサで記録した呼吸信号、およびパル

スオキシメトリーで酸素飽和度を測定した。PSG 記録

後、臨床専門家が睡眠段階を判定した。 

2.3. 圧電センサ 

睡眠検査室において、ベッドマットレスの下の胸

郭位置にポリフッ化ビニリデン（PVDF）製のシート型

圧電センサ（Ｓｕｉｚｉｎｅ ｄeｌｔa®；ヘルスセンシング株

式会社）を設置し、生体振動信号を記録した。 

 

図１ PVDF 信号取得システムの概略図 

2.4. 生体データの抽出 

2.4.1. ＰＶＤＦ信号からの心拍数計測 

ＰＶＤＦセンサから取得したＢＣＧ波形には、ＥＣＧ

のＱＲＳ波の直後に機械的な心収縮を表すＩＪＫ波が

現れるという特徴がある（図２）。ＢＣＧのＩＪＫ波は、Ｅ

ＣＧのＱＲＳ波のように急峻な波形を示さず、ＢＣＧ波

形のわずかな歪みでもＩＪＫ波の識別が困難になる場

合がある。本開発では、心拍間隔を算出するため、

深層学習を用いてＢＣＧからＥＣＧに相当する信号

を生成する手法を独自開発した 5)。図３ａ上段に深

層学習を用いて生成されたＥＣＧに相当する信号（ｐ

ＥＣＧ）を示す。ｐＥＣＧのＲ－Ｒ間隔（ｐＲＲＩ）を求め

（図３ｃ折れ線）、逆数から心拍数（ＨＲ）を求めた。 

図２ 1 心拍分のＥＣＧとＢＣＧ波形 

 
図３ ＰＶＤＦ信号から深層学習により生成された

疑似心電図（pECG）と抽出された呼吸波形（Resp） 

2.4.2. 呼吸信号計測 

呼吸信号を得るために、０．０５～０．５Ｈｚ周波数

帯のバンドパスフィルタを、１０Ｈｚで再サンプリングさ

れたＰＶＤＦ信号に適用した。複素Ｍｏｒｌｅｔウェーブ

レット関数を用いた連続ウェーブレット変換を、２０秒

窓の信号に適用し、平均パワースペクトルプロファイ

ルを求めた。平均パワースペクトルプロファイルで最

大パワーを示す周波数を呼吸周波数とした（図３b）。

呼吸周波数を中心とするバンドパスフィルタにより呼

吸波形を抽出し（図３ｃ青実線）、呼吸数（ＲＲ）を求

めた。 

2.4.3. 心肺カップリング指標の算出 

心肺カップリング指標（λ）は、呼吸性洞性不整

脈（RSA）と呼吸波形間の位相コヒーレンスとして算

出した。この指標は、心拍変動（HRV）周波数解析

によって評価された心臓迷走神経活動と有意な正

の相関を示し 6)、また、睡眠中の徐波皮質活動の時

間的ダイナミクスと相関していることが示されている 7)。

呼吸周波数帯域の HRV のパワースペクトル密度と

RSA の振幅は呼吸数の変化に大きな影響を受ける

が、心肺カップリング指標（λ）は呼吸数の影響を受

けにくいことが示されている 6）。 

2.4.4. 体動検出 

体動は睡眠段階によって異なり、浅いノンレム睡

眠中は、レム睡眠中と比較して体動量が多くなり、深

いノンレム睡眠中には、体動はほとんど発生しない。

覚醒中は体動が頻繁に発生する。１０秒枠内に

PVDF 信号に過大な入力信号が加わった時に体動

が生じたと判断し、5 秒毎にシフトしながら体動回数
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をカウントした。その後、睡眠段階のエポックに合わ

せて３０秒間における平均体動回数を体動頻度

（BM）とした。 

2.5 深層学習モデル 

深層学習には双方向型 LSTM ネットワーク

（biLSTM）を用いた。biLSTM は入力ベクトルシーケ

ンスと睡眠段階スコア間の特徴量の順序関係を、過

去から未来方向へと同時に学習することができる。

biLSTM 層は３層構造とし、全結合層（FC）は、浅い

ノンレム睡眠（N１、N２）、深いノンレム睡眠（N３）、レ

ム睡眠（REM）、覚醒（WK）、離床（LV）の６つのクラ

スに対応する 6 つのニューロンで構成される（図４）。

学習モデルで推定される睡眠段階の精度は１０分

割交差検証法を用い、真陽性率と真陰性率の平均

値を表す balanced accuracy、偶然に一致する割合

を除去した一致度の信頼性尺度である Cohen’s 

kappa、適合率と再現率の調和平均として計算される

F１スコアで評価した。 

３ 結果 

図５は、28 歳男性の終夜 PSG による睡眠段階ス

コア（SS）と学習モデルの入力に用いた各パラメータ

のプロファイルを示している。睡眠段階の違いにより、 

 

 図４．biLSTM 深層学習モデルのアーキテクチャ  

心拍数（HR）と呼吸数（RR）に特徴的な変化が見ら

れる。N１から N３へ睡眠が徐々に深くなると、心拍数

と呼吸数は安定して低下する。一方、レム睡眠また

は覚醒（WK）では心拍数が変動し、呼吸数は増加

する。心肺カップリング指標λは N2、N3 睡眠では 1

に近づき、レム睡眠および覚醒では変動が大きく減

少する傾向が見られる。体動（BM）は覚醒時に高く

なる傾向が見られた。 

 

図５ PSG による睡眠段階スコア（SS）と PVDF セン
サによって計測された各パラメータプロファイル 

図６は43歳男性被験者の、モデルにより推定され

た睡眠段階（ｐSS）と PSG から実測された睡眠段階

（SS）の例を示している。各睡眠段階の推定精度（図

６f）から判断すると、REM と N2 が最も優れた分類性

能を示した。円グラフ（図６c、d）および表（図６g）に

示すように、就寝時間に対する各睡眠段階の割合

は、実際の値とほぼ一致した。Balanced-accuracy、

Cohen’s kappa、F１スコアはそれぞれ０．７７、０．５３、

０．７３であった。 

 

図６ モデルによる睡眠段階推定結果(pSS)と PSG
による睡眠段階(SS)の一例 

４ 結論 

本開発では、圧電センサから得られた心拍数、呼

吸数、心肺カップリング指標および体動頻度の 4 パ

ラメータを用いて、biLSTM ディープラーニングにより

構築したモデルが睡眠５段階分類を妥当な精度で

推定できることを示した。本稿で詳細は触れないが、

睡眠潜時や中途覚醒などの主要な睡眠指標を算出
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することも可能である。本手法は無拘束であるがゆ

えに、在宅医療・介護施設等において、客観的な睡

眠モニタリングを必要とする場合に有効なツールに

なると考えられる。また医師は PSG 検査を実施しなく

ても病院外で睡眠状態を評価できるようになり、睡

眠の質低下に纏わる疾患の早期診断につながる可

能性もある。 

5 社会実装に向けて 

本稿で述べた手法を社会実装するための検討を

進めている。圧電センサで取得された原データはエ

ッジデバイスで処理され、リアルタイムで無線通信を

介してクラウドサーバに伝送される。サーバでは深

層学習モデルを用いた睡眠解析が行われ、解析結

果は「睡眠レポート」としてサーバから顧客先のスマ

ートフォン等のデバイスに送信される（図７）。このよう

な睡眠解析サービス用いて病院やホテルでの実証

試験に着手したところである。 

なお、この睡眠解析手法ならびに関連する信号

処理技術は論文化し、国際専門誌に受理され掲載

された 5),8),9)。さらに、りそな中小企業振興財団及び

日刊工業新聞共催の「第３７回中小企業優秀新技

術・新製品賞」において本技術を利用した「睡眠解

析センサ」が優秀表を受賞することができた。本技

術の開発・評価にご協力いただいた関係各位に、

心より御礼申し上げます。 

 

 

図７．睡眠レポートの例とクラウドシステムの概略図 
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