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Prediction of ECG signals from
ballistocardiography using deep
learning for the unconstrained
measurement of heartbeat
intervals
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Subaru Ikeda® & Kyuichi Niizeki*

We developed a deep learning—based extraction of electrocardiographic (ECG) waves from
ballistocardiographic (BCG) signals and explored their use in R-R interval (RRI) estimation.
Preprocessed BCG and reference ECG signals were inputted into the bidirectional long short-term
memory network to train the model to minimize the loss function of the mean squared error between
the predicted ECG (pECG) and genuine ECG signals. Using a dataset acquired with polyvinylidene
fluoride and ECG sensors in different recumbent positions from 18 participants, we generated pECG
signals from preprocessed BCG signals using the learned model and evaluated the RRI estimation
performance by comparing the predicted RRI with the reference RRI obtained from the ECG signal
using a leave-one-subject-out cross-validation scheme. A mean absolute error (MAE) of 0.034 s was
achieved for the beat-to-beat interval accuracy. To further test the generalization ability of the learned
model trained with a short-term-recorded dataset, we collected long-term overnight recordings of BCG
signals from 12 different participants and performed validation. The beat-to-beat interval correlation
between BCG and ECG signals was 0.82 +0.06 with an average MAE of 0.046 s, showing practical
performance for long-term measurement of RRIs. These results suggest that the proposed approach
can be used for continuous heart rate monitoring in a home environment.

Keywords Ballistocardiogram, Bidirectional long short-term memory network, Interbeat interval detection

With an increase in the aging population, the incidence of cardiovascular disease is increasing, and it is more
important than ever to understand the risk factors associated with the disease and its prevention. To provide the
essential information necessary for the diagnosis and treatment, particularly for the elderly and patients with
cardiovascular diseases, ongoing and long-term assessment of cardiac activity is effective as it allows detection
of changes in physical conditions and improvement of health outcomes!. However, accessing a hospital when
required is not feasible for all individuals, especially for older patients with limited mobility. Therefore, the
development of devices that allow individuals to easily monitor vital signs in their home environment without
being restrained by their daily lives is awaited. When monitoring biological signals outside a hospital, the
measurement and recording are performed automatically, unconsciously, and unrestrainedly to eliminate the
physical and mental burden on individuals. In daily life, individuals who are not experts cannot be expected to
consciously attach electrodes or sensors to their bodies daily.

The heart rate (HR) is the most commonly measured vital sign and is routinely monitored in clinical
practice using an electrocardiogram (ECG); however, wearing ECG electrodes can cause discomfort and skin
inflammation, especially for long-term monitoring. Furthermore, the ECG-measuring device is inaccessible to
the public. Therefore, the current research is primarily focused on the realization of noncontact and unobtrusive
HR monitoring, wherein the researchers are seeking alternatives to ECG-based HR monitoring in the wellness
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domain. Various noninvasive methods for monitoring the HR have been proposed. Most of them involve
unrestrained sensing using environment-embedded sensors such as conductive fibers for bed sheets?, load cells
under the bed leg3*, pressure sensors embedded in the pillow or air mattress>®, piezoelectric sensors placed
on the mattress’-%, microwave Doppler shift on the body surface!®!!, and fiber Bragg grating sensors placed
on the bed mattress'>!>. Most of these methods detect heartbeats based on body vibrations due to the cardiac
physiological signature. This technique, known as ballistocardiography (BCG), measures the ballistic force
generated by cardiac contractions and blood circulation in the body!*. Similar to the QRS complex in the ECG,
the waveform of the BCG for each heartbeat is characterized by an “IJK” complex at the extremes of signal, which
is related to the ventricular ejection and aortic pulse pressure!>!°. The morphology of BCG waveforms varies
depending on the position and lying posture of the individual, with diversity across individuals!”'3. Moreover,
BCG is susceptible to noise and body movement interference during the acquisition process. This poses a
significant challenge in identifying heartbeats from BCG signals. Thus far, several studies have attempted to
analyze the BCG signal for the accurate extraction of heartbeats from BCG signals using a variety of approaches.

Related works

Most of the previous studies on extraction of heartbeats from BCG signal are based on the J-peak detection using
waveform characteristics, spectral-based methods, and the clustering technique. Mora et al.'’. proposed a precise
J-peak annotation algorithm that identifies candidate intervals containing J-waves using a subject-specific search
window. Their proposed method achieved a mean absolute error (MAE) metric of 4.7 ms for estimating the
heartbeat interval. Similarly, Shin et al.?’. implemented a template matching approach to detect the J-peaks of
the BCG waveform, where the BCG template was constructed using ensemble averaging of valid BCG cycles
centered at J-peak points; subsequently, matching was performed using the correlation coefficient function,
which improved the detection accuracy with a sensitivity of 95%. The template matching approach is based on the
correlation between a fixed individual heartbeat template and the obtained signal; it has relatively low robustness
to the beat-to-beat variation in the waveform morphology. Alvarado-Serrano et al.?!. introduced a wavelet
transform-based algorithm to detect J-waves, in which an optimal wavelet scale was selected by implementing a
continuous wavelet transform with splines to reduce noise and mechanical interference. Although this method
is intuitive, it requires extensive complicated preprocessing. Briiser et al.?2. proposed an unsupervised machine
learning technique to identify the shape of a single heartbeat in the BCG, in which features describing the BCG
waveform are extracted using a modified k-means algorithm. Paalasmaa et al.®. introduced an adapted heartbeat
model in which the heartbeat shape was adaptively deduced from the BCG signal using a hierarchical clustering
approach, and the inter-beat intervals (IBI) were identified by detecting the positions where the heartbeat shape
best matched the signal. Although the authors acknowledged the large variation in the coverage rate across
the participants, an MAE of 13 ms was achieved for the heartbeat interval. However, if the wave peak of the
BCG signal is not distinct, then the probability of clustering errors increases, leading to misidentification of
J-peaks, which is a major shortcoming of the clustering technique. Such a situation can occur because significant
peak distortion is observed when even slight movements of a body parts occur. Moreover, the shapes of BCG
waveforms vary depending on the lying posture in the same individual. To address these challenges, deep
learning approaches have been implemented for measuring heartbeats. Deep learning methods can effectively
capture BCG-signal variability via data-driven supervised learning. Proll et al?* demonstrated a deep learning
model based on a stacked convolutional and recurrent neural network, whose accuracy of estimating the mean
HR was higher than that of the traditional digital signal processing approach. Zhang et al.?* proposed a deep
neural network-based auto-labeling technique that identifies the “IJK” complex of the BCG wave automatically
by making the model learn the association between the continuous BCG waves and the labeled sequence with an
ECG reference. Recently, Schranz et al.>>. proposed a model of discrete reference heartbeat events with a kernel
function. The learned deep neural network model approximates the kernel shape that encodes discrete heartbeat
events, thereby allowing a more precise J-peak extraction. In most of these approaches, the deep learning models
process the input BCG signal to represent as a time-series of discrete J-peak events.

In this study, we introduced a novel approach based on deep neural networks under a regression framework
that enables the prediction of ECG waves directly from BCG signals for the accurate measurement of IBI. The
possibility of extracting the corresponding ECG signal from the piezoelectric BCG signal has been previously
suggested by identifying an inverse transfer function between the ECG and the BCG?%?’; however, to the best
of our knowledge, a deep learning-based regression model that generates continuous ECG waves from BCG
signals has not been reported. We considered that a deep learning model that can learn the association between
the temporal patterns of BCG and ECG and can generate an ECG corresponding signal directly from a BCG
signal has the ability to detect heartbeats easily with a high accuracy. The primary goal of this study was to
evaluate the correlation of the IBI analyzed from the predicted ECG (pECG) from BCG signals with those
analyzed from a genuine ECG in various lying postures and overnight long-term recordings.

Materials and methods

Study design and participants

In this study, a bidirectional long short-term memory network (biLSTM), with a regression framework, was
used to generate an ECG corresponding signal from BCG for the measurement of heartbeat interval. The
biLSTM architecture can capture the temporal dependencies between the local features of ECG and BCG signals
in forward and backward sequences. The workflow of this study is illustrated in Fig. 1. First, we investigated
whether biLSTM models can accurately generate pECG from a BCG signal and validated the performance of the
developed models on the calculated R-R interval (RRI) data acquired from short-term recording using the leave-
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Fig. 1. Study design for the development and validation of a deep learning model to generate pECG from BCG
signals. Training and validation were performed with a leave-one-subject-out cross-validation approach for

the short-term recording. Validation for the overnight long-term recording was performed using the learned
model based on the training data from all participants recruited for the short-term recording.

one-subject-out cross-validation scheme. Subsequently, we examined whether the learned model achieves good
prediction accuracies for RRI calculation in different participants recruited for overnight long-term recording.

For short-term recording, a total of 18 young healthy volunteers (15 males and 3 females) were recruited
from the Yamagata University student body to gather training data and build a deep learning model designed
to predict ECG waves from BCG signals. The mean age, weight, and body mass index (BMI) of the participants
were 22.7+1.7 (standard deviation [SD]) years, 66.1+7.4 kg, and 22.8+2.1 kg/m?, respectively. To validate
the overnight long-term recordings, 12 male participants were recruited separately from the same institution.
The mean age, weight, and BMI of these participants were 22.7 + 1.0 years, 67.2+6.5 kg, and 22.6 + 1.9 kg/m?,
respectively. All the participants were normotensive nonsmokers, were not taking any medications, and were
self-described “normal sleepers.” Each participant provided informed consent to participate in the study after
receiving a complete written and oral explanation of the procedures. The experimental protocol was approved
by the Yamagata University Institutional Human Subjects Ethics Committee (approval no.: H30-240). The study
was performed in accordance with the guidelines established by the Declaration of Helsinki.

Piezoelectric sensor

A sheet-type piezoelectric element made of polyvinylidene fluoride (PVDE), a fluorine-based organic
ferroelectric material, was used to measure the BCG signal. In the PVDF material, electric polarization occurs
when the displacement of the jons arranged in the crystal lattice increases owing to pressure and deformation.
The PVDF sensor was sandwiched between positive and negative electrodes in the thickness direction, and the
accumulated charge was converted from current to voltage to extract the electric signal. The sheet-type PVDF
sensor is commercially available as Suijin delta® (Health Sensing Co. Ltd, Tokyo, Japan). The width and height
of the sensor sheet were 70 and 10 cm, respectively, and the thickness was approximately 1 mm, including a
protective cover. This sensor was placed beneath the bedsheets without direct contact with the body surface.
The sensor was sufficiently thin to prevent the participant from consciously being aware of its presence. BCG
captures the ballistic forces of the heart caused by the ejection of blood into the great vessels with each heartbeat.
The BCG waveform varies depending on the direction of propagation of the ballistic forces and the position
of the participant on the bed with respect to the sensor. In this study, the PVDF sensor was positioned at the
location of the thorax perpendicular to the axis along the great blood vessels such that the measurement was
performed in the dorsoventricular axis (see Fig. 2).
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Fig. 2. Schematic of a recording system for simultaneous acquisition of ECG and BCG signals. The
PVDF sensor was installed beneath the bedsheets without direct contact with the body surface. PVDF
polyvinylidenefluoride film, ECG electrocardiogram, BCG ballistocardiogram.

ECG and BCG data acquisition

Short-term recordings for preparing the deep learning dataset

Simultaneous measurement of the ECG and BCG signals was performed to enable the model to learn the
relationship between the ECG and BCG waveforms obtained from 18 participants. The schematic of the data
acquisition system is presented in Fig. 2. The ECG data used for the comparative analysis were acquired using
a wireless ECG (ZM-940P; Nihon Kohden, Tokyo, Japan) with unipolar thoracic leads by placing the Ag-AgCl
electrodes on the 4th intercostal space and left lower abdomen (Fig. 2). The participants were comfortably lying
on a bed in the supine, prone, left lateral, or right lateral decubitus positions. After achieving stable BCG and
ECG waveforms, the ECG and BCG signals were recorded simultaneously at a sampling frequency of 200 Hz
using a PowerLab device with a resolution of 16 bits (Bio Research Center Co. Ltd, Nagoya, Japan). During the
BCG and ECG collections, participants were asked to remain silent and stationary as much as possible. After
the recording, participants were asked to change their positions, and the recording was repeated at different
positions. The order of the positions tested was counterbalanced among participants. The recording period for
each position was 2 min. For subsequent analyses, the recorded signals were exported to text files.

Overnight long-term recording

A total of 12 participants voluntarily participated in the long-term overnight recording study. After familiarization
with the laboratory environment and equipment, each participant was required to attend the laboratory at
approximately 22:00 on the night of the recording. All participants were asked to abstain from exercise and
caffeine for 6 h before the experimental session. The participant was placed in a relaxed supine position on the
bed, with the PVDF sensor placed at the location of the participant’s thorax under the bedsheet. Similar to the
case of the short-term recordings, participants wore wireless ECG electrodes on their chests. After confirming
that the ECG and BCG signals were stable, the room light was turned off and signals were continuously recorded
throughout the night using the PowerLab device at a sampling frequency of 200 Hz. To maintain the sleep
environment as similar as possible to their home sleep, experiments were performed in a quiet room with
the temperature maintained at 22-24 °C and the recordings were started when the participants went to bed
according to their sleep habits and ended when they woke up the next morning. Following the overnight study,
participants were allowed to leave the laboratory.

Preprocessing of the BCG signal

To explore the appropriate filter preprocessing of the BCG signal, the auto- and cross-power spectral density
estimates (PSD and cPSD, respectively) of the ECG and BCG signals were obtained using Welch’s periodogram.
As a preprocessing step, a bandpass filter followed by full rectification were used to emphasize the power of the
fundamental frequency of heartbeats and remove the respiratory influence on the BCG signal. The fourth-order
Butterworth bandpass filter with a variable lower cutoft frequency was designed with the higher cutoff frequency
remaining fixed at 50 Hz. The PSD and cPSD estimations were conducted using 2-min data with fixed segment
lengths of 4096 points (approximately 20 s) for a fast Fourier transform with 50% overlap. For each segment,
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we subtracted the linear trend and applied the Hanning window. In addition, the magnitude of the squared
coherence function (MSC) between the ECG and preprocessed BCG signals was estimated using the following
equation to quantify the; degree of similarity in the frequency domain:

MSC = ﬁ%, where Sxy(f) is the cross-power spectrum between the ECG and preprocessed BCG
signals and S_(f) and S_(f) are the auto-power spectra of each signal. The mean value determined by averaging
the MSC over the frequency range between 0.5 and 35 Hz was used as a quantitative measure of similarity
between the preprocessed BCG and ECG signals because the fundamental frequency of the ECG signal and
its harmonics energy ranges in this frequency band. To determine a suitable lower cutoff frequency for the
bandpass filter, the average MSC values were compared by varying the lower cutoff frequency from 5 to 35 Hz.
An example of the analysis is illustrated in Fig. 3, which shows parts of the raw ECG and BCG signals measured
in the supine position, together with the preprocessed BCG signal (Fig. 3a), that is, the fully rectified bandpass
filter BCG signal (hereafter denoted as |hnBCG]). In this example, the lower cut-off frequency of the bandpass
filter was set to 15 Hz. Spectral analyses of these signals provided PSD, cPSD, and MSC profiles. As shown in
Fig. 3b, the PSD of the rectified bandpass filter BCG signal (PSDlhBCGl) and the cPSD between the ECG and
|[hBCG| signals had distinct peaks in the fundamental frequency of heartbeats at approximately 1 Hz and its
harmonics. The MSC exhibited peaks at frequencies where the cPSD increased and almost disappeared above
35 Hz. Figure 3¢ shows the effect of the lower cutoff frequency of the bandpass filter on the average MSC values.
Based on the observation that MSC showed a higher value in the frequency range of 10-25 Hz, we set the lower
cutoff frequency of the bandpass filter to 15 Hz in the present study.

Deep learning model

The ECG signal from the BCG was predicted by training a biLSTM deep neural network to learn the association
between the preprocessed BCG signals (|hBCG|) and the reference ECG. The biLSTM architecture learns to
generate ECG waves under the regression framework of machine learning in the backward and forward
directions. An overview of the model structure is presented in Fig. 4. The model is composed of a sequential
input layer, three biLSTM layers, a fully connected layer, and a regression layer. Each bi-LSTM layer consists of
128 hidden cells. A dropout layer (rate of 0.2) was applied after each biLSTM layer during the training phase to
reduce overfitting. The fully connected layer integrates the features extracted from the previous biLSTM layer
and outputs a single value at each time step. The last layer of the neural network is the regression layer, which
computes the mean squared error (MSE) between the pECG and reference ECG signals. During the training
process, the weights and biases of the biLSTM network layers were adjusted to minimize the MSE.

Training and validation of short-term recording
The training dataset, D, included N paired preprocessed BCG signals and the reference ECG,
D ={|nBCG|,, EC’G,-}Z.A; ;- For each participant and recumbent position, four segments of 10-s paired

data were randomly selected, yielding 288 segments (18 participants X 4 positions X 4 segments) that were
prepared for the training data. We aimed to train the biLSTM neural network to learn a functional mapping
(f) parameterized by a set of weights (w) of hidden layers in the network such that the input signal |hBCG|
matched the genuine ECG signal, solving the following optimization problem through a set of weight vectors

(w), min % > N | Li(w), where L(w) describes a loss function, L; (w) = HECGi -7 (|hBC’G|i ;w) H2

The model was trained and validated using a leave-one-subject-out cross-validation scheme (a block surrounded
by the red dotted lines in Fig. 1). This implies that if we want to evaluate the performance of a model on the
data of participant “A;” then we must train the model using the data of the remaining participants. The learned
model was used to generate pECG for participant “A” and to validate the model performance by comparing the
RRI estimated from pECG to that derived from genuine ECG. This process was repeated for all participants in
the validation set. The network was trained using a mini-batch of 2000 sequences (10 s). The Adam training
optimizer was used to minimize the MSE between the output pECG and the genuine ECG signals. The initial
learning rate was set to 0.005, which was reduced to 1/100th of the previous rate every 50 epochs. The L2 norm-
based gradient threshold method was employed to clip the gradient values that exceeded the gradient threshold
of 1. The training process was terminated when there was no improvement in the test data over 100 consecutive
epochs. The validation accuracy and loss function were used as the stopping criteria to avoid overfitting. The
hyperparameters used in this study are listed in Table 1. Hyperparameter values were selected based on several
trial-and-error trials. The model was trained on a machine with an NVIDIA GeForce RTX4090 GPU and 40GB
VRAM.

Validation of overnight long-term recording

To validate the model performance for overnight long-term recordings, a deep learning regression model was
constructed by feeding the entire training dataset, obtained from all the participants in the short-term recording
study, to the biLSTM model (see the right side of Fig. 1). The training conditions for deep learning were the
same as those for the short-term recording. The resultant learned model was applied to generate pECG using a
preprocessed BCG signal, which was measured in the night from each participant of the overnight long-term
study, as the input.

Data analysis

Beat-to-beat interval calculation

The identification of the R-peaks in the ECG and pECG signals was performed using the built-in “findpeaks”
function in MATLAB software (R2022b, MathWorks Inc., MA, USA). The ECG and pECG signals were
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Fig. 3. (a) Example of the tracings of the ECG signal (red), BCG signal (black) in the supine position, and
bandpass-filtered BCG signals followed by full-wave rectification (blue) within a frequency range of 15-50 Hz.
(b) Auto-power spectral densities of ECG (Pp.), BCG (Pp ), bandpass-filtered BCG (P, ,;), and bandpass-
filtered BCG signals followed by full-wave rectification (Py,5) together with the cross-power spectral density
(cP) and magnitude squared coherence function (MSC) between the ECG and |hBCG| signals. The auto- and
cross-power spectral densities are normalized by the respective maximum value. The fundamental frequency
of heartbeats and its first and second harmonics are clearly visualized in the power spectral density of the
bandpass-filtered BCG signal after full-wave rectification. (c) The mean and SD of the average MSC values
plotted as a function of the lower cutoff frequency of the bandpass filter over a frequency range of 5-35 Hz.
ECG electrocardiography, BCG ballistocardiography, [#BCG] full-wave rectified bandpass-filtered BCG signal,
PECG predicted ECG signal, pBCG predicted BCG signal, SD standard deviation.
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Fig. 4. Architecture of the bidirectional long short-term memory (biLSTM) deep learning neural network
model for predicting the ECG wave from BCG signals. The model is composed of a sequential input layer (SI),
three biLSTM layers, a fully connected layer, and a regression output layer (RO). Each biLSTM layer consists
of 128 hidden cells. A dropout layer (rate of 0.2) is added after each biLSTM layer to reduce overfitting. For
simplicity, only a single biLSTM with the dropout layer is shown. BCG ballistocardiography signal, |#BCG]|

full-wave rectified bandpass filter BCG signal, pECG predicted ECG signal.

Hyperparameters Range searched Selected values
Number of biLSTM layers [2,3,4] 3

Hidden units in an individual biLSTM cell | [32, 64, 128] 128

Dropout rate [0.1,0.2,0.3] 0.2

Initial learn rate [0.001-0.01] 0.005

Dropping of the learning rate

[0.01-0.1]/50 epochs | 0.01/50 epochs

L2 regularization [0.01-1] 0.1
Gradient threshold [0.1-3] 1
Maximum epochs [1000-5000] 3000

Table 1. Ranges and selected values of hyperparameters for deep learning. biLSTM bidirectional long short-

term memory.
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differentiated and normalized before identifying the R-peaks. The minimum peak height was defined as the
amplitude threshold of unity, and the minimum peak distance was set to 0.4 s. The beat-to-beat RRI was
calculated as the duration between successive R peaks. Following this, automatic artifact rejection was performed
by excluding those beats with an RRI of greater than 1.8 s (HR: <33 beats/min). The RRI estimated from the
pECG signal is referred to as predicted RRI (pRRI).

Because the PVDF sensor has a high sensitivity, the physical motion of the participant during measurements
causes an excessive amplitude voltage signal, which prevents the accurate evaluation of heartbeats. Therefore, for
the overnight long-term recording, during which body movement may occur owing to changes in the sleeping
position, the BCG signal was analyzed every 10 s; if a body movement was detected, analysis was skipped in this
segment. Body movement was considered to have occurred if the amplitude of the raw BCG signal exceeded five
times the SD of the raw BCG signal in a time window of 10 s.

Evaluation of performance and statistical analyses

The accuracy of the pRRI estimated using the pECG signal was assessed by beat-by-beat comparison with the
RRI measured using the reference ECG signal. The timing accuracy of the pECG signal generated by the model
was evaluated on the basis of the time difference in the onset of the R-wave (At,) between the ECG and pECG
signals. To gauge the difference between the RRI and pRRI, the MAE for all pRRI and RRI values was computed
as MAE= > i.vzl |[pRRI (i) — RRI (i) |, where N represents the number of heartbeats. For overnight

long-term recording, the number of detected pRRIs differed from that of detected RRIs because BCG signals
were occasionally hampered by body movement during data collection. If consecutive missing datapoints are
present, then the reliability of the interpolated data becomes questionable. Therefore, the MAE was computed as

MAE = £ iv IPRRI (i) — RRI; (i) |, where RRI, is the linearly interpolated RRI value aligned with the

onset of the R wave of the pECG signal.

Linear regression analysis and Bland-Altman plots were used to describe the relationship and agreement
between the beat-to-beat RRI and pRRI. The level of agreement (LoA) and mean bias were calculated. Spearman
rank correlation analysis was performed between the difference (pRRI-RRI) and the average RRI calculated
using ECG and pECG signals to test for the constant or proportional bias in Bland-Altman plots. Data are
presented as means+SD. All statistical tests were 2-sided, and a P value of less than 0.05 was judged to be
statistically significant. Data processing and analyses were performed using customized scripts programmed in
MATLAB with machine learning and signal processing toolboxes.

Results

Examples of pECG profiles generated by the learned model for all body positions in a single participant are
shown in Fig. 5. The pECG and reference ECG profiles showed high similarity. The R-wave peaks (closed black
circles) on both the ECG and pECG signals were well aligned; however, a small time difference existed between
the onset of the R-wave on the ECG and that on the pECG (Aty). The estimated pRRI from the pECG and the
calculated RRI from the ECG matched well, where respiratory modulation of the RRI was clearly observed,
especially in the prone position. The pECG profiles generated by the deep learning model using the leave-one-
subject-out cross-validation strategy in the supine, prone, left-lateral, and right-lateral positions per participant
are shown in Supplementary Fig. S1.

Figure 6a shows the results of linear regression and Bland-Altman analyses for the comparison between the
RRI and pRRI in each body posture. The slope of the linear regression was close to unity and the association was
highly significant for all body postures. Pearson’s correlation coefficients ranged from 0.87 for the right-lateral
position to 0.92-0.94 for the supine, prone, and left-lateral positions. The biases for all body postures were
zero, indicating a good mean agreement. However, Spearman’s rank correlation analysis between the differences
(pPRRI-RRI) and means of the Bland-Altman plots demonstrated that a small positive proportional bias was
present for all body postures (supine: regression coefficient (8)=0.043, r=0.112, p<0.001; prone: f=0.044,
r=0.084, p<0.001; left lateral: $=0.058, r=0.140, p<0.001; and right lateral: $=0.086, r=0.160, p<0.001).
The LoA ranged from +0.08 and +0.11 s. The linear regression and Bland-Altman analyses for the comparison
of between the pRRI and RRI obtained in all body postures are presented in Fig. 6b. The correlation between
the estimated pRRI and the simultaneously obtained reference RRI was highly significant (r=0.92), and the
slope of the regression line was nearly identical. Out of the 9529 heartbeats analyzed, 94.6% were accurately
estimated within + 5% error. Table 2 summarizes the mean values and SDs for the RRI, pRRI, and MAE together
with the At,. The MAE between the pRRI and RRI was approximately 0.03-004 s regardless of body postures
(approximately 3.5% of the mean RRI). The mean At, was almost zero for each body posture; however, a
variation was observed when individual heartbeats were considered, as demonstrated in Fig. 7, which shows the
box plot distributions of Aty for each body posture. The Aty varied with SD between 0.035 and 0.055 s regardless
of the body posture. Enlarged cutouts of the signal timing measured from different participants in the supine
position are displayed in Fig. 8, which shows the typical cases of positive (a), almost zero (b), and negative At,
(c). By comparing the timing of the signals, we found that an R-wave on the pECG occurred near the foot point
of the preprocessed BCG signal (hBCG]) in all the cases, suggesting that the model appeared to be learning to
generate an R-wave at this time.

We then examined whether the generation of pECG signals was affected when an extrasystole occurred and
when the BCG signal was contaminated by motion artifacts. Figure 9a shows an example of the pECG profile
when an extrasystole occurred. Extrasystoles are caused by the abnormal function of the cardiac conduction
system, which does not result in mechanical activity of the heart. Thus, a pECG signal was not generated because
of the lack of heartbeat-induced vibrations in the BCG signal. In addition, Fig. 9b shows an example in which
the BCG signal was contaminated by motion artifacts caused by brief physical movements of the body parts of
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Fig. 5. Typical examples of predicted ECG (pECG) profiles generated by the deep learning model using

the leave-one-subject-out cross-validation strategy in each of four different recumbent positions (supine,
prone, left lateral, and right lateral) for a single participant. For visual clarity, only 20 s of the analyzed data

are shown. The raw BCG signal (black) and the preprocessed BCG signal (blue) are labeled as “BCG” and
“|hBCG],” respectively. Closed black circles on the ECG and pECG signals represent the location of the R wave
determined by the peak detection algorithm. Calculated R-R interval (RRI) from the ECG (red open circles)
and pECG (blue crosses) signals and the time difference of the onset of the R wave between the ECG and
PECG signals (Aty) are also presented. ECG electrocardiogram, BCG ballistocardiogram, |#BCG]| full-wave
rectified bandpass-filtered BCG signal, RRI R-to-R interval, pECG predicted ECG signal, At time difference of
the onset of the R wave between the ECG and pECG signals (a positive value indicates that the onset of the R
wave on the pECG signal appeared later than that on the ECG signal).

the participant. In this case, a pECG signal was not generated because the amplitude of the |hBCG]| signal was
significantly decreased. In both cases, the resulting longer periods of the RRI and pRRI during the extrasystole
and a longer period of the pRRI during the contamination of motion artifacts were considered outliers if the
automatic artifact rejection criterion was satisfied.

A representative example of the heartbeats analyzed from the overnight long-term recordings is shown in
Fig. 10. For this participant, the total recorded time was 442 min, and 19,212 pECG heartbeats (coverage: 84.4%)
were analyzed. Linear regression analysis demonstrated that the pRRI estimated from pECG signals correlated
well with the reference RRI calculated from simultaneously recorded ECG signals, with a correlation coefficient
of 0.86. Bland-Altman plot of the analyzed heartbeats demonstrated that the bias was zero and that the LoA was
+0.11 s. The results of all participants are summarized in Table 3, and the heartbeats analyzed for each overnight
long-term recording per participant are shown in Supplementary Fig. S2. None of the participants reported
leaving bed at night or complaining about not being able to sleep. Because BCG signals can be interfered
with and distorted by the motion artifacts owing to postural changes during sleep, analyzable heartbeats were
reduced to 78.3% on average (Table 3). The MAE value varied from 0.028 to 0.060 s among the participants
and the average value was 0.046 +0.010 s, which corresponds to 4.0% of the overall mean RRI (1.087 s). The
correlation coefficients between the estimated pRRI and reference RRI ranged from 0.74 to 0.91. Bland-Altman
analysis demonstrated that the mean bias was zero with upper and lower LoAs ranging between 0.14 +0.03 and
—0.14+0.03 s, respectively, indicating a good mean agreement with a modest accuracy.
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Fig. 6. (a) Linear regression and Bland-Altman analyses for a comparison between ECG- and pECG-derived
R-R intervals in each of four recumbent positions on the bed. The linear regression plot illustrates the fitted
linear model (solid line) and the identity line (dotted line) with the regression equation and correlation
coefficient (r). In Bland-Altman plots, 95% limits of agreement (LoA) and bias are displayed with dashed

and solid lines, respectively, along with their numerical values. The upper (1LoA) and lower (JLoA) LoA

are presented with a+1.96 standard deviation. (b) Linear regression and Bland-Altman analyses for a total
of 9529 heartbeats obtained in the four body positions for all participants. ECG electrocardiogram; BCG:

ballistocardiogram, pECG predicted ECG signal, pRRI predicted R-R interval calculated from the pECG signal
generated by the deep learning model.

Supine Prone Left lateral Right Lateral | All

(n=2370) (n=2513) (n=2311) (n=2335) (n=9529)
RRI (s) 0.911+0.127 0.860+0.112 0.934+0.123 | 0.925+0.111 0.906 +£0.122
PRRI(s) 0.912+0.134 0.861+0.120 0.935+0.132 | 0.927+0.125 0.907+0.131
MAE (s) 0.032+0.013 0.032+0.011 0.033+0.011 | 0.040+0.020 0.034 +0.006
Aty (s) —0.003+0.029 | —0.010+£0.011 | —0.012+0.018 | 0.006 +0.020 | —0.004+0.015

Table 2. Comparison of the RRI and pRRI and time differences in the onset of the R-wave between the
ECG and pECG signals in the four recumbent positions from short-term recordings. Values are expressed
as means + standard deviations. RRI: R-R interval calculated from the ECG signal; pRRI: predicted RRI
calculated from the pECG signal; MAE: mean absolute error; Aty: time difference of the onset of the R-wave
between ECG and pECG signals (a negative value indicates that the onset of R-wave on the pECG signal
appeared earlier than that on the ECG signal).

(a)
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Fig. 7. Box and whisker plots showing the distribution of AtR in the four recumbent positions. The box
plot displays the 25th percentile, median, and 75th percentile and the whiskers extend to the minimum and
maximum values without outliers. The number of heartbeats (n) is indicated over each box plot. Aty: time
difference of the onset of the R wave between the ECG and pECG signals (positive value indicates that the
onset of the R wave on the pECG signal appeared later than that on the ECG signal).

Discussion

The present study aimed to evaluate the performance of heartbeat interval measurement using a pECG signal
generated by the deep learning model learned from the BCG signals acquired from a PVDF sensor and
simultaneously recorded reference ECG signals. By entering the preprocessed BCG (i.e., |hBCG]|) and reference
ECG signals as training data into the biLSTM neural network, the deep neural network generalizes the implicit
mapping function between [hBCG| and genuine ECG signals by adjusting the connection weights in the stacked
hidden layers containing neurons. The learned model generates a realistic ECG wave similar to a genuine ECG
wave. However, the shape of the pECG waveform does not need to be exactly the same as that of the genuine
ECG waveform; it is sufficient that the intervals between successive R-waves of the pECG are the same as those
of the genuine ECG signals for the measurement of heartbeat intervals.

The estimated pRRI from the pECG signal via leave-one-subject-out cross-validation in the short-term
recording showed a good agreement with the reference RRI irrespective of body postures, with an average
MAE of 0.034 s, which corresponds to 3.7% of the average RRI observed (0.906 s). Moreover, the average SD
of the MAE across participants for each recumbent position was low (0.006 s), indicating low inter-participant
variability in the MAE. The Bland-Altman analysis indicated the presence of a small but significant proportional
bias regardless of the body posture, whereas these biases were sufficiently small that they were unlikely to have
a practical significance. As indicated in Table 4, Mora et al.’®. achieved a smaller MAE than that reported using
the current approach. This superior performance (IBI MAE: 4.7 ms) may be attributed to individual calibration
procedures, which deal with inter-subject differences in the BCG signal morphology. The method based on the
parameterization of local maxima in the BCG as well as on a modified k-means clustering algorithm achieved
an MAE of less than 20 ms for IBI?2. However, the requirement of repeating the training step whenever subjects
change their posture in bed is a major limitation of this method. A previous study utilizing a wavelet-transform-
based peak detection algorithm?! reported an LoA of 29 ms. Other studies*** using a deep learning approach
have also shown good results in terms of HR MAE or root mean squared error (RMSE). Proll’'s deep learning
model, which was designed using stacked convolutional and recurrent deep network layers, achieved an MAE
of ~2 beats/min (bpm) across 14 patients in a held-out testing set*>. However, the HR measurements were
performed every 8 s patches, not on a beat-by-beat basis. Zhang et al.?* proposed an auto-labeling technique
using the biLSTM network to identify the IJK complex, and the model improved the accuracy of heartbeat
detection with an HR RMSE of 1.4 bpm.

Methodological differences and variations in performance metrics preclude definitive comparisons across the
studies; however, variations in At, should be considered in relation to the MAE in the present study. As shown
in Fig. 7; Table 2, even though the mean Aty was close to zero, variations were observed in the beat-to-beat
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Fig. 8. Enlarged cutouts of the signal timing showing positive (a), almost zero (b), and negative Aty (c)
measured in the supine position for different participants. Average At values of the three heartbeats in each
condition are 0.09 (a), — 0.02 (b), and —0.07 s (c), respectively. At: time difference of the onset of the R wave
between the ECG and pECG signals (positive value indicates that the onset of the R wave on the pECG signal
appeared later than that on the ECG signal).
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Fig. 9. Predicted ECG (pECG) profiles during the occurrence of an extrasystole (a) and temporary body
movement (b) during measurements in the supine position. The pECG profile is predicted using the leave-
one-subject-out cross-validation scheme. Closed black circles on the ECG and pECG signals represent the
locations of the R wave detected using the finding peak algorithm. The calculated R-R interval (RRI) from
the ECG (red open circles) and pECG (blue crosses) signals are presented. The BCG signal was temporarily
silent owing to the lack of a ventricular contraction during an extrasystolic beat (arrow); thus, a pECG signal
was not generated during this period (a). Furthermore, the generation of the pECG signal is hampered by the
superposition of a body movement artifact (arrow) onto the BCG signal (b). ECG electrocardiogram, BCG
ballistocardiogram, |hBCG| full-wave rectified bandpass-filtered BCG signal.

At regardless of the body posture. More specifically, Fig. 8 provides an intuitive visualization of the variation
in Atp, where the R-wave of the pECG appears to occur at the foot point of the |hBCG] signal. Assuming that
the foot point of |hBCG| indicates the mechanical start of blood ejection, Aty variations would reflect inter-
individual changes in the pre-ejection period (PEP). Previous study has suggested that the PEP shows high inter-
individual variability and is prone to large changes under the influence of sympathetic and parasympathetic
activities?®. However, in the case of the negative At, shown in Fig. 8c, the foot point of |hBCG| preceded the
onset of the R-wave of the genuine ECG signal, which cannot be explained by the change in the PEP. We assumed
that, in some individuals, atrial contraction might have been captured with a significant oscillatory amplitude
owing to the preprocessing of the BCG signal. Although the physiological interpretation of the origin of BCG
waves is complicated, presystolic waves called “F” and “G” waves are found in the BCG signal'®. These waves
appear between the P and Q waves of the ECG or immediately before the QRS complex and are considered to
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Fig. 10. (a) An example of the analyzed heartbeats from the overnight long-term recording in a single
participant. Red and blue dots represent the beat-to-beat interval of the heart analyzed from ECG and
PECG signals, respectively. (a) Enlarged view of the part where the RRI shows high fluctuations during the
period between 86 and 92 min. (c) Scatter plot and linear regression line (red line) for the RRI and pRRI
calculated from the ECG and pECG signal, respectively. The regression equation and correlation coefficient
of regression (r) are shown. (d) Bland-Altman plot of the analyzed heartbeats. The limits of agreement (LoA)
and bias are displayed with dashed red lines and dashed black lines, respectively, along with their numerical
values. The upper (1LoA) and lower (|LoA) LoA are presented with a+ 1.96 standard deviation (SD). ECG
electrocardiogram, pECG predicted ECG signal, RRI R-to-R interval, pRRI predicted RRI calculated using the
pECG signal generated by the deep learning model.
Participant Heartbeats Coverage | RRI PRRI MAE Bias 1LoA {LoA
ID Record time (min) | (1) (%) (s) (s) R (s) (s) (s) (s)
19 450 24,701 80.5 1.107+0.174 | 1.097+0.178 | 0.91 0.046 -0.01 0.14 -0.15
20 442 22,768 84.4 1.16740.099 | 1.166+0.109 | 0.86 0.037 0.00 0.11 -0.11
21 484 20,386 84.8 1.25240.179 | 1.258+0.167 | 0.91 0.055 0.01 023 -0.22
22 502 31,650 67.2 0.979:£0.090 | 0.979:+0.101 | 0.81 0.036 0.00 0.12 -0.12
23 415 21,686 80.9 1.170+0.092 | 1.167+0.112 | 0.74 0.052 0.00 0.14 -0.15
24 458 25,628 722 1.096+0.116 | 1.094+0.126 | 0.88 0.038 0.00 0.12 -0.12
25 419 23,857 749 1.064+0.097 | 1.063+0.106 | 0.89 0.028 0.00 0.09 -0.10
26 436 21,523 80.7 1.193+0.100 | 1.193+0.106 | 0.74 0.050 0.00 0.15 -0.15
27 397 20,129 82.7 1.14740.097 | 1.144+0.110 | 0.80 0.044 0.00 0.13 -0.13
28 436 31,606 69.0 0.827£0.081 | 0.827£0.092 | 0.76 0.044 0.00 0.12 -0.12
29 371 21,721 78.2 1.018+0.119 | 1.015+0.132 | 0.80 0.060 0.00 0.16 -0.16
30 429 19,899 83.9 1.266+0.102 | 1.263+0.119 | 0.78 0.056 0.00 0.15 -0.15
Mean+SD | 43736 23,795+4069 | 783+6.1 | 1.112+0.121 | 1.106+0.124 | 0.82:£0.06 | 0.046+0.010 | 0.00+0.00 | 0.14+0.03 | — 0.14+0.03

Table 3. Comparison of the RRI and pRRI and the limits of agreements and bias derived from the bland-
Altman plot analysis of overnight long-term recordings. Values are presented as means + standard deviations
(SD). RRIL: R-R interval calculated from the ECG signal; pRRI: predicted RRI calculated from the pECG signal
generated by the deep learning model; R: linear regression coefficient; MAE: mean absolute error; TLoA: upper
limit of agreement; | LoA: lower limit of agreement.

be associated with atrial contraction or an atrial systole?. Presumably, the first chunk of the bimodal-shaped
oscillatory |hnBCG| signal appearing at every heartbeat shown in Fig. 8c reflects atrial contraction that must have
been the timing to generate the R-wave in the model. This may partially explain the extent of the MAE. The pRRI
could be accurately estimated to yield the RRI as long as the |hBCG]| signal is consistent across the heartbeats;
however, if the |hnBCG| signal fluctuates across the heartbeats, for example, if the first chunk of the bimodal-
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Acquisition
Paper Study population (size) | Sensor type & location Algorithm time Coverage | Performance
Short-term recording
19 Healthy MEMS accelerometer J-peak annotation guided by . IBI MAE:
Mora et al. (16) attached to a bed slat subject-specific search windows 5 min N/A 4.7 ms
Alv?lrado- ” Healthy Piezoelectric sensor on a chair Wavelgt transform based J-wave 100's N/A IBI LoA:
Serrano et al. (7) detection 29 ms
Briiser et al.2? Healthy MEMS accelerometer ]-pea'k detectioq by feature vector & 26 min 95.9% IBI MAE:
(16) ona bed k-means clustering 17 ms
. . Iculated
. 23 . . Pneumatic pressure sensor embedded | IJK complex detection by ca HR RMSE:
Proll et al. Hospital patients (14) inabed CNN4 GRU DL f)zi?hg s 100% 2.1%1.1 bpm
Zhang et al. % Healthy ﬁber-opgics sensor attached to an DK labeling by biLSTM DL 200-500 s 98.9% HR RMSE:
(8) arm-chair 1.4 bpm
Healthy Piezoelectric sensor placed under a ) . . IBI MAE:
Present study (8) bed sheets ECG wave extraction by biLSTM DL | 2 min 100% 34 ms
Overnight recording
y 9 | Healthy Piezoelectric sensor installed under . . IBI MAE:
Paalasmaaet al. (16) a bed sheet Adaptive heartbeat shape modeling | N/A 54.1% 13 ms
Siyahjani etal®® | Healthy (45) Pressure sensor embedded in a bed Peak detection of bandpass filtered 459 min N/A 30 epoch HR LoA:
signal 6 bpm
. . . . ) TMT for
Zink et al3! suspected SDB patients | charged polymer foil placed undera | Amplitude pattern tracking with all subjects: | 63% IBI MAE: 4+72 ms
. (21) bed sheet quality index 93h . =
J-peak detection by CNN+ResNet | LML £OF IBI MAE: 27.9+7
Schranz et al.?® Healthy (11) 3D-accelerometer embedded in a bed D{ Y all subjects: | N/A ms TeT =
134h
Present study Healthy (12) Ei:dzg}elleeeitric sensor placed under a ECG wave extraction by biILSTM DL | 437436 min | 78.3% IBI MAE: 46 + 10 ms

Table 4. Comparison of parameters reported in previous studies on the measurement of heartbeats from BCG.
SDB: Sleep disordered breathing; MEMS: Micro Electro Mechanical Systems; HR: heart rate; IBI: inter-beat
interval; bpm: beats/min; DL: deep learning; CNN: convolutional neural network; GRU: gate recurrent unit;
biLSTM: bidirectional long short-term memory; ResNet: residual neural network; TMT: total measurement
time; LoA: limit of agreement; MAE: mean absolute error; RMSE: root mean squared error; N/A: not available.

shaped signal shown in Fig. 8c becomes obscure or even absent, it may shift the time at which the R-wave occurs
in the model, thereby causing an error in the pRRI estimation.

In this study, the feasibility of overnight long-term heartbeat interval detection was demonstrated with a
good mean agreement and modest accuracy. The correlation of the estimated pRRI from pECG signals with
the reference RRI ranged between 0.74 and 0.91 and the average MAE value was 0.046 +0.010 s. Bland-Altman
analysis indicated that the zero bias resulted in an LoA of +0.140 s on average for 12 participants. These
performances were lower than those for short-time recordings, which may be related to the increased number
of heartbeats and the distortion of BCG deflection caused by slight body movements below the movement
threshold or the ambiguous character of the BCG signal with interpersonal variability that does not conform to
the sequence characteristic rule learned by the model. Further investigation is required to determine whether the
performance improves with the expansion of the training dataset.

Siyahjani et al.*® compared a BCG-derived HR using a pressure sensor embedded in a bed with
polysomnography on an epoch-by-epoch basis. They achieved an LoA of approximately + 6 bpm (Table 4). This
is comparable with our finding of the beat-by-beat LoA of +0.14 s, which is equivalent to +7 bpm in terms
of the HR. When evaluating the performance on the same epoch-by-epoch basis with a duration of 30 s, the
LoA was reduced to +2 bpm. Zink et al.>!. used an electromechanical film sensor to measure the length of the
heartbeat cycle in patients with sleep-disordered breathing using polysomnography. They introduced a quality
index that allowed the identification of segments with artifacts in the BCG signal and automatically excluded
them from the analysis. Their proposed algorithm provided a good correlation of beat-to-beat cycle length
detection with simultaneously recorded ECG signals with a correlation coefficient of 0.95 and an IBI MAE
value of 4 +72 ms, indicating a higher accuracy than that reported in the present study. However, the number of
analyzable heartbeats is significantly reduced (coverage of approximately 65%) when analyzing quality metrics.
The algorithm based on adaptive heartbeat shape modeling combined with hierarchical clustering produced
good results with an IBI MAE of 13 ms’. However, it showed large variability in the coverage rate (8.2-94%;
average: 54.1%) possibly owing to the different clarity of the heartbeat shapes across the subjects. Recently,
Schranz et al.?*. proposed a deep learning architecture consisting of convolutional and ResNet neural networks
for modeling discrete reference heartbeat events with a symmetric kernel function. The results obtained using
their model were in good agreement with the reference ECG, showing an IBI MAE of 28 ms.

It is worth mentioning that, for preprocessing the BCG signal, we employed a bandpass filter followed by a
full-rectification technique and estimated the optimum lower cutoff frequency that would provide the highest
coherence value between the preprocessed BCG and reference ECG signals. To predict a waveform similar to
a genuine ECG signal from a BCG signal using a deep learning regression framework the deep neural network
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must be inputted with a dataset containing common frequency components present in both signals. As shown
in Fig. 3b, applying a full-wave rectification process to the bandpass-filtered BCG signal yielded several clear
spectral peaks at the dominant frequency of heartbeats and extra signal components from the raw BCG signal
were removed through harmonics. We considered that this preprocessing helps ensure that the most relevant
frequency components related to the heartbeat are selected as training data; therefore, the model is constructed
appropriately.

According to previous reports, without using deep learning, a pseudo-ECG waveform can be estimated
from a BCG signal. Al Ahmad et al.?*?” demonstrated the feasibility of extracting an ECG corresponding signal
using a chest-worn piezoelectric sensor by identifying an inverse transfer function between piezoelectric output
voltages and ECG signals in the frequency domain; however, the quantitative accuracy of the IBI measurements
was not reported.

Methodological limitations remain to be addressed before implementing this approach in the healthcare
domain. The present study was compromised by the small sample size of the training dataset and was conducted
only on young healthy participants to understand inter-subject variability in a reasonably uniform study
population. However, there is substantial variation in the shape and amplitude of BCG waveforms among the
individuals'. Previous studies have suggested that the BMI is positively correlated with the performance metrics
of the MAE for beat-to-beat interval estimation®. Hence, future studies should include a larger sample size with
wider age and BMI ranges to increase the generalizability of the pECG model. Furthermore, validation should be
performed with more diverse participants, including elderly people and patients with pathologies, particularly
when applied to those with irregular heartbeats. If the current pECG model is applied to patients with frequent
arrhythmia, a similar performance may not be achieved. Further testing is required to clarify the accuracy of the
proposed approach for extremely short or long heartbeat intervals. For application in an at-home setting, it may
be worth considering collecting an individual’s data and tailoring the pECG model to that individual because the
variability of the BCG waveform within the same individual is comparatively low2.

In summary, a deep learning approach for the extraction of ECG signals from a BCG was proposed for
accurate heartbeat interval measurements. We demonstrated the feasibility of using BCG signals to provide
an unobtrusive method to estimate the RRI with practical performance when the participant is asleep. Deep
learning with a regression framework used in the present study does not require complex feature extraction
of heartbeats in BCG, like previously reported signal processing approaches. In addition, we have shown that
an ECG corresponding signal can be estimated by feeding the BCG signal, preprocessed through a simple
bandpass filter followed by full rectification, into a deep biLSTM network. The proposed method simplifies
peak detection and requires a low computational load once the model is built. Although our model does not
necessarily outperform the previously reported best performing models, it shows consistent results across
different participants and different lying postures.

One of the prominent features of the BCG is the ready accessibility and reusability of the sensors, which
allows us to deploy the sensor in the home environment of the individual and perform measurements without
affecting user comfort and the presence of medical staff. We expect that the proposed approach will be a viable
alternative to conventional methods of HR monitoring in settings outside hospitals, provided that the above
issues are satisfactorily addressed.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable
request.
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